Part Number Hot Search : 
SMC91C95 PN8377 T90S23 STUB0D8 THL41A HT46R342 T113007 LT123
Product Description
Full Text Search
 

To Download IRF7509PBF-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet d1 d1 d2 d2 g1 s2 g2 s1 top view 8 1 2 3 4 5 6 7 n-channel mosfet p-channel mosfet parameter max. units n-channel p-channel v ds drain-source voltage 30 -30 v i d @ t a = 25c continuous drain current, v gs 2.7 -2.0 i d @ t a = 70c continuous drain current, v gs 2.1 -1.6 a i dm pulsed drain current  21 -16 p d @t a = 25c maximum power dissipation  1.25 w p d @t a = 70c maximum power dissipation  0.8 w linear derating factor 10 mw/c v gs gate-to-source voltage 20 v v gsm gate-to-source voltage single pulse tp<10 s 30 v dv/dt peak diode recovery dv/dt  5.0 v/ns t j , t stg junction and storage temperature range -55 to + 150 c soldering temperature, for 10 seconds 240 (1.6mm from case) thermal resistance parameter max. units r ja maximum junction-to-ambient  100 c/w 

  
 n-ch p-ch v ds 30 -30 v r ds(on) max (@v gs = 10v) 0.11 0.2 q g (typical) 7.8 7.5 nc i d (@t a = 25c) 2.7 -2.0 a features benefits industry-standard pinout micro-8 package ? multi-vendor compatibility compatible with existing surface mount techniques easier manufacturing rohs compliant, halogen-free environmentally friendlier msl1, industrial qualification increased reliability form quantity tube/bulk 95 IRF7509PBF-1 tape and reel 4000 irf7509trpbf-1 package type standard pack orderable part number IRF7509PBF-1 micro-8 base part number    
  
       ! 

  
  
       !   
   
  
  
          !"#          !"#    !$  %&
' !(  )#    $  %&
' !(  )#   $  ))   )  ) *#    )+  )*!   + !   ,!#    )*     )  ) #      +   + !   -#   )           !"#  )           !"#  ) $     )   ,!#    $     )   -#      )     +       )     +      !    +     ) !(     !    +    ) !(   ./0'12345  66  7)   7   66 * , )   * ! ))  66 ) ) ,   )  ) $  66 !  ,   !  *   + *    $ *    )    )    )    )$    !     $     )    ),    ,  1   ,*        +   
 8
/0'942
:5  
 ;  942
:5  && ' 
 % 
/ '8
/0'<
% 
'   
. ::5 5  12 
'
0'
'   8
/0'3450
 =  :.5 =  ./0'5 =  .8
>? ::?@5  
0
<
8:     %    
0
<&&8:     1::    
0' 
'   <00' 
'   %a 
&' 
'  "#$%" &  '( 
 ")$ *  +,-   .!/  ./0!1  1  !2  3 4- 5,-  , .!/ 6 ./0!1  1  !2  3 4-   
   

 


 
 
 ! "#  ;(  / "#

 
:   ) *#   +  )  
:   ) #   +  ) 
:   )!  ) *#%  - ) , %  , *  
:   )!  ) #%  -  %  ) 
:      !b) cd  
:      !b) cd    5 7 0%& &   8   

,
!      
   
 
  
    ) !    ) !    )    )-    )   !(  ) *#       )   !(  ) ,#      + -    +!   +, *   * !! $ %& 
 
"
      

00/0'0
>9 8 @   0:/0'0
>9 8 @    8 12:5   %a%'a   =  %a%'a 5 # 

 
:   !(  ) *# ;)#;" 
:    !(  ) # ;)#;"

 7  
  
       !  fig 1. typical output characteristics fig 3. typical transfer characteristics fig 2. typical output characteristics 0.1 1 10 100 0.1 1 10 20 s pulse width t = 25c a j ds v , drain-to-source voltage (v) 3.0v vgs top 15v 10v 7.0v 5.5v 4.5v 4.0v 3.5v bottom 3.0v d i , drain-to-source current (a) 0.1 1 10 100 0.1 1 10 a ds v , drain-to-source voltage (v) d i , drain-to-source current (a) 20 s pulse width t = 150c j 3.0v vgs top 15v 10v 7.0v 5.5v 4.5v 4.0v 3.5v bottom 3.0v 0.1 1 10 100 3.0 3.5 4.0 4.5 5.0 5.5 6.0 t = 25c t = 150c j j gs v , gate-to-source voltage (v) d i , drain-to-source current (a) a v = 10v 20 s pulse width ds fig 4. typical source-drain diode forward voltage 0.1 1 10 100 0.4 0.8 1.2 1.6 2.0 t = 25c t = 150c j j v = 0v gs v , source-to-drain voltage (v) i , reverse drain current (a) sd sd a fig 5. normalized on-resistance vs. temperature 0.0 0.5 1.0 1.5 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 j t , junction temperature (c) r , drain-to-source on resistance ds(on) (normalized) v = 10v gs a i = 1.7a d fig 6. typical on-resistance vs. drain current 0 2 4 6 8 10 0.060 0.100 0.140 0.180 0.220 r , drain-to-source on resistance i , drain current (a) d ds (on) vgs = 10v vgs = 4.5v +,-

   
  
       !  fig 8. maximum safe operating area fig 9. typical capacitance vs. drain-to-source voltage fig 10. typical gate charge vs. gate-to-source voltage 0 100 200 300 400 1 10 100 c, capacitance (pf) ds v , drain-to-source voltage (v) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss 0 4 8 12 16 20 024681012 q , total gate charge (nc) g v , gate-to-source voltage (v) gs a for test circuit see figure 9 v = 24v v = 15v i = 1.7a ds ds d fig 7. typical on-resistance vs. gate voltage 0 4 8 12 16 0.060 0.080 0.100 0.120 0.140 r , drain-to-source on resistance v , gate-to-source voltage (v) gs ds (on) id = 2.7a +,- 0.1 1 10 100 1 10 100 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms

 3  
  
       !  fig 11. typical output characteristics fig 13. typical transfer characteristics fig 12. typical output characteristics 0.1 1 10 0.1 1 10 d ds 20 s pulse width t = 25c a -i , drain-to-source current (a) -v , drain-to-source voltage (v) j -3.0v vgs top - 15v - 10v - 7.0v - 5.5v - 4.5v - 4.0v - 3.5v bottom - 3.0v 0.1 1 10 0.1 1 10 d ds a -i , drain-to-source current (a) -v , drain-to-source voltage (v) -3.0v vgs top - 15v - 10v - 7.0v - 5.5v - 4.5v - 4.0v - 3.5v bottom - 3.0v 20 s pulse width t = 150c j 0.1 1 10 3.0 4.0 5.0 6.0 7.0 t = 25c t = 150c j j gs d a -i , drain-to-source current (a) -v , gate-to-source voltage (v) v = -10v 20 s pulse width ds fig 14. typical source-drain diode forward voltage 0.1 1 10 0.4 0.6 0.8 1.0 1.2 1.4 t = 25c t = 150c j j v = 0v gs sd sd a -i , reverse drain current (a) -v , source-to-drain voltage (v) fig 15. normalized on-resistance vs. temperature 0.0 0.5 1.0 1.5 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 j t , junction temperature (c) r , drain-to-source on resistance ds(on) (normalized) a v = -10v gs i = -1.2a d fig 16. typical on-resistance vs. drain current   
     ( )                
  5,-

 6  
  
       !  fig 18. maximum safe operating area fig 17. typical on-resistance vs. gate voltage   
     ( )             
    5,- fig 20. typical gate charge vs. gate-to-source voltage fig 19. typical capacitance vs. drain-to-source voltage fig 21. maximum effective transient thermal impedance, junction-to-ambient 0.1 1 10 100 1000 0.00001 0.0001 0.001 0.01 0.1 1 10 100 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 0 4 8 12 16 20 024681012 g gs a -v , gate-to-source voltage (v) q , total gate charge (nc) v = -24v v = -15v ds ds i = -1.2a d for test circuit see figure 9 0 100 200 300 400 1 10 100 c, capacitance (pf) a ds -v , drain-to-source voltage (v) v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c gs iss gs gd ds rss gd oss ds gd c iss c oss c rss n-p - channel 0.1 1 10 100 1 10 100 operation in this area limited by r ds(on) single pulse t t = 150 c = 25 c j c -v , drain-to-source voltage (v) -i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms

  
  
       !  micro8 part marking information (lead-free) micro8 package outline dimensions are shown in milimeters (inches) inches millimeters min max min max a 0.10 (.004) 0.25 (.010) m a m h 1 2 3 4 8 7 6 5 d - b - 3 3 e - a - e 6x e 1 - c - b 8x 0.08 (.003) m c a s b s a 1 l 8x c 8x notes: 1 dimensioning and tolerancing per ansi y14.5m-1982. 2 controlling dimension : inch. 3 dimensions do not include mold flash. a .036 .044 0.91 1.11 a1 .004 .008 0.10 0.20 b .010 .014 0.25 0.36 c .005 .007 0.13 0.18 d .116 .120 2.95 3.05 e .0256 basic 0.65 basic e1 .0128 basic 0.33 basic e .116 .120 2.95 3.05 h .188 .198 4.78 5.03 l .016 .026 0.41 0.66 0 6 0 6 dim lead assignments single dual d d d d d1 d1 d2 d2 s s s g s1 g1 s2 g2 1 2 3 4 1 2 3 4 8 7 6 5 8 7 6 5 recommended footprint 1.04 ( .041 ) 8x 0.38 ( .015 ) 8x 3.20 ( .126 ) 4.24 ( .167 ) 5.28 ( .208 ) 0.65 ( .0256 ) 6x part number example: t his is an irf 7501 lot code (xx) dat e code (yw) w = week y = year p = designates lead-free product (optional) 6 1996 g 1997 z y x 52 j h k 51 50 1999 2000 1998 ww = (27-52) if preceded by a letter wor k week c d a b w 29 c 2003 e d f 30 1995 1996 1994 a y b 27 28 2001 2002 ye ar y z x 25 26 0 8 7 9 24 1998 2000 1999 1997 ww = (1-26) if preceded by las t digit of calendar year week wor k b d c w a 02 2 2002 4 3 5 04 03 1994 1995 2003 1 y 01 ye ar 2001 yww = 9532 = ef date code examples: yww = 9503 = 5c note: for the most current drawing please refer to ir website at: http://www.irf.com/package/

 9  
  
       !  micro8 tape & reel information 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. outline conforms to eia-481 & eia-541. 2. controlling dimension : millimeter. note: for the most current drawing please refer to ir website at: http://www.irf.com/package/ ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability ?? applicable version of jedec standard at the time of product release ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ ms l 1 (per je de c j-s t d-020d ?? ) rohs c ompliant yes qualification information ? qualification level industrial (per jedec jesd47f ?? guidelines) moisture sensitivity level micro-8


▲Up To Search▲   

 
Price & Availability of IRF7509PBF-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X